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Abstrad-The importance of including the effects of non-linear inertia and curvature in the analysis
of the motion of a beam with a constant distance between supports is assessed. For this. the non­
linear response of clamped-damped and clamped-pinned beams to a harmonic load of frequency
near the undamped natural frequency of the beam is investigated by a perturbation method.

INTRODUCTION

The ditferential equations with cubic nonlinearities. developed in Partl of this work (Crespo
da Silva. 1988) for an extensional beam with .ubitmry boundary conditions. are specialized
for'1 beam thed (i.e. clamped or pinned) at one end and either fixed or arbitrarily supported
at the other end. Here. for simplicity and for comparing results with other work presented
in the literature. the material properties are taken to be constant along the beam. Also. the
clfects of the distributed mass moments of inertia are neglected. This implies that the
torsional frequencies of the beam arc much higher than its bending frequencies. The analysis
presented here discloses the intluence of higher order terms in the non-line'1r response of
extensional beams. As an example. the planar response of an extensional beam to a periodic
excitation. including the etfect of all the cubic geometric nonlinearities. is analyzed in detail.
The excitation C.IO be either distributed along the beam. concentmted at several points
along the span. or applied at its base (in which case. the base would also be moving).

SIMI'L1FIED EQUATIONS OF MOTION FOR HIGH TORSIONAL FREQUENCIES

Consider a beam fixed at x = O. i.e. u(x = O. i = i) = O. and either free or supported
at x = L. The notation used here is the same as that in Part 1 (Crespo da Silva. 1988). Let
the beam be subjected to a distributed force with components Qv(X.i) and Q~.(x. f). along
its two principal bending directions. and let damping in the system be viscous with virtual
work given as - eel; e5v+ Ii' 1511'). For simplicity. the effect of the distributed mass moments
ofinerti.t arc neglected. This implies that the beam's torsional natural frequencies are much
higher than its bending natural frequencies. It is also assumed that the material properties
of the beam are constant.

Let the "II boundary condition" at x = L be expressed in the general form

(I)

where Ku = 00 if II(L.i) = 0 (i.e. if the end at x = L is fixed) and Ku = 0 if U(L.i) # 0 (i.e.
if the end at x = L is free to move with a non·zero u-displacement component).

With Qu(.\'. I) = O. the displacement II(X. I) is given as

Ii'II(X.i) = xGu(L. 1)1EA - ::; (v'~+ II"~) dy+ O(r.').
- 0

(2)

This is obtained by integrating eqn (21) in Part 1 (Crespo da Silva. 1988). from x = 0 to x.
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Evaluating eqn (2) at x = L and combining the result with eqn (I). the following expres­
sion is obtained for G.(L./):

By defining an angle of twist "i'(x. I) as

y(.\'. t) = (J..{x. t) +I t'''u'' dy

(3)

(4)

and by considering the beam's end at x = 0 to be restrained against rotation, it follows
that ,'(0. t) = O. To O(e z). and with QII, = O. the following relationship is readily obtained
for ,'(x.1) from eqn (ISd) in Part I (Crespo da Silva. 1988), In eqn (5), H..(x./)
=D;j'(x./) +0(62) ,

D;y(X./) = xH;.(L./) + (D, - D~) f' II' V"II''' d: dy.
n JL

(5)

To obt~lin .1 general expression for I(.(L./) let the "0, boundary condition" at x = L be
expressed as

(6)

where h;- = ''.f..J if the end at x = L is restrained 'lgainst rot'ltion. and K7 =0 if it is free to
rot.lle. Evaluating eqn (5) at x =L and combining the result with eqn (6). the following
expression for lly(L, t) is obtained:

K, flitLlI.(L I) =··_---'--·(D -D.) tl"W" d~ dt"
..' (I +K) q '0 L ~. ,

(7)

By making use ofeqns (2)-(5), and (7), the dilli.:rential equations of motion, eqns (18b)
und (18c) in P.lrt f (Crespo da Silva, 1988) can be written as two integro-partial differential
equations in the bending deflections t'(x. t) and W(X./). This was done analytically, by
computer. with the aid of MACSYMA (Rand. 1984). To .malyze the motion described by
such equations, it is convenient to nondimensionalize the variables involved. With ( ).
denoting the non-dimensional form of ( ), one lets

x· = x/L, I· = I[Dq /{mL4)]I;z. c· = cL2/(mD~)I/Z

IX· = IX/L, Q: = QJL1/D~ (IX = 11.11'). (8)

With primes and dots denoting, from now on, partial differentiation with respect to x
and t. respectively. and dropping the superscript • for convenience in notation, the nor­
malizcd differcnthll equations describing the flexural-flcxural motion of an extensional
beam with nonlinearities up to O(r. J

) are then

{ [ i< 1'< K..\\''' II i< ]+ (l-fJ,) w" t'"w''dy-w''' v"u"dy--'-, t'"I1''' dy dx
I 0 I +K7 0 I
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{ [ f' l' K " 11 f' J- (I-p,.) l'" ~ l'''W'' dy+r'" l'''W' dy-Z""l"W' - ~~ l'''W'' dy dx
I 0 1+1:;.0 I

(I - P">! [ "I' f" " . K.. (Xl''') II f~' "" J'" ." ,+ ----'-- V l' w· d: dy- ' l' W dy dx + II' (l' I'" + 11'11' )
P, II I I +K, 0 I
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(9a)

(9b)

where fl.· = DdD~ and fl;· = [)d [)~.

To ()(l:~). eqns (9.t) and (9b) reduce. for Ku = 00. to eqns (5) and (6) in Ho. Scott and
mslcy (1975) and to eqns (I) and (2) in Ho. Scott and msley (1976). where the forced and
free non-line.tr non-planar motions of a pinned -pinned beam were investigated. For planar
motion (i.e. either vex, I) = 0 or lI'(x, I) = 0) these equations also reduce to eqns (20) in
Nayfch, Mook and Sridhar (1974) and to similar equations used by .1 number of investi­
gators with Ku = 00, to analyze the response of beams with a fixed distant..'C between supports
(Burgreen. 1951; Countryman and Kannan. 1985; Eisley. 1964; Eisleyand Bennett. 1970;
Ray and Bert, 1969; Srinivasan, 1966; Tseng and Dugundji. 1970; Woinovsky-Krieger.
1950).

The quantity D~/(EAL2) that appears in the first bracketed term { } in cqns (9a) and
(9b) is very small. It is the sqmlre of the radius of gymtion (normalized by the length L of
the undeformed beam) of the beam's cross section. For extensional beams, where Ku # O.
those terms are the dominant nonlinearities in the equations of motion. With D~/(EAL2) =
0(1:), they are O(e~) while the remaining non-linear terms in the equations are 0(e 3). These
dominant nonlinearities, which are equal to ;.IX' == IX'Gu( 1,/) (IX = l" 11'), are due to midplane
stretching of the beam. As indicated above, they are the same terms obtained by a number
ofother authors. For extensional beams. if one chooses e = D~/(EA L2) as in Nayfeh. Mook
and Sridhar (1974). it is St."Cn th.tt the bending deflections arc O(e) and. thus. very small. In
the next section, the quantitative effect of both the 0(£2) and 0(e 3

) non-linear terms in the
motion of an extensional beam is investigated in detail.

When Ku = 0 the beam behaves us inextensionalto O(e l
). In this case, all nonlineurities

for an initially struight be.tm arc cubic. For Ku =0 and K•. =0, eqns (9a) and (9b) reduce
to eqns (5a) und (5b) in Crespo da Silvu and Glynn (1978) for dampcd·-frec beams.

RESPONSE CIIARACfERISTICS OF A RESONANT MOTION

To assess the influence of the 0(e 1
) non-lineur terms in the response of an extensional

beam, consider the plunar motion of pinned-pinned. pinned-damped or clumped-damped
beams subjected to a distributed periodic excitation Q•.(x. t) = Q(x) cos (nt+t). For
l·(X. t) == O. eqn (9b) reduces to
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{ K. "'il " ,it[ rK. il

" iY" J" }'+ --}\' w· dx+!w -'-- w· dx- w· d= dy.
I +K. 0 I I + K. 0 0

(10)

To determine the steady-state response of the beam. and the character of the perturbed
response about its steady state. use will be made of the perturbation method of multiple
time scales (Nayfeh. 1981; Nayfeh and Mook. 1979). For this. three time scales 10 = I,

I, = et and I: = £:1 are introduced. where £ is a small arbitrary parameter used only for
"bookkeeping purposes". With K. = 00. we let

( Ila)

and expand the displacement w(x. t) as

To address the harmonic response of the beam including all the nonlinearities present in
the diflcrential equation. eqn (10). the damping coefficient and the excitation are expressed
as

( lie)

With d( )!dl = (clo+r.cI. +c2c12+ ...) ( ), where cln( ) = iJ( )!i'Jtn (n = O. 1.2, ... ). cqn
(10) then yields the following perturbation equations for 1I',(to• t 1,/ 2),

(12a)

(12b)

0(c 3
): cI~1l'3+Il"j" = Q3(X) cos (il/o+ r) - 2c1od, W2 - (di +2dod2)wl - C2dOWI

- [11", (11", \I";)')' + {II";' L' 11",2 dx+ !1I"ld~r[y L' W',2 dx-f11';2 d=] dyr (12c)

Considering a one mode response, the solution to eqn (12a) is

where F(x) satisfies the differential equation F"" -uiF = O. With

for later convenience, F(x) is given as:

pinned-pinned beam

F(x) = ,./2 sin (mrx); n = 1,2, ... ;

pinned-elamped or clamped-elamped beam

(l3b)
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F(x) =cosh (r:c)-cos (rx)-KIsinh (rx)-sin (r.l')]

K = [cosh (r) -cos (r»)/[sinh (r) - sin (r)]. (13c)

The frequency w = r 2of the linearized oscillation satisfies the following relations:

1+ (cosh r) cos r = 0 for the c1amped-clamped beam

tan r = tanh r for the clamped-pinned beam.

To obtain an approximate solution for the non-linear response. it is convenient to introduce
the quantities

(14)

and then transform eqns (12b) and (12c) to ordinary differential equations by multiplying
them by F(x) and then integrating the result over the domain of x. With this procedure.
eqn (12b) yields

eI~W22+W2W22 = 2w(eI,a) sin 'fI+ll(2wel l ll>-3'%PAa 2/4) cos 'fI-(~PAllJ/4) cos (3'f1)

( 15a)

where

(15b)

The solvability conditions for eqn (15a). i.e. the necessary conditions for the solution
to be periodic. are seen to be

dill = 0

2wel,<1> = 3'%fJ.~1l2/4.

(16a)

(16b)

To address the resonant case where n is near win eqn (12c). a detuning C
2
0'2« 1 is

introduced as

( 17)

With the transformation given byeqn (14), the O(c.1) eqn (12c) yields the following
dilTcrential equation for WjJ:

el5WJJ+w2WJJ = fJ cos ('fI+y)-2e1ocl,II'22-(di+2e1oel2)11",-c2e1oll'"

-'%2W:1 -'%1 WI,[WlleI~W'1 + (elull'l 1)2] (18)

where W" =a( t 2) cos 'fI and

fJ =f F(x)Q.'(x) dx

(19a)

(19b)

(19c)
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X~ = - f {F'" f F'~ dx-F'(F' F"r} dx. (19d)

By making use ofeqns (16a) and (16b) and of the particular solution to eqn (ISa) for
,r~~. the solvability conditions for eqn (18) are obtained as follows:

2OJd~a+OJc~a = 13 sin " (20a)

2(tJad~<1l-[3xPA/(8OJ>ra5+(xIOJ~/2-3:x~/4)a3 = -/3 cos y. (20b)

In terms of the original time t. the solvability conditions for eqn (10) are obtained by
combiningeqns (l6a). (16b). (20a) and (20b). This yields the following differential equations
for the amplitude and "phase" of the response:

2Wl; == 2UJ(ed,a+e~d~a+ ...) = e~ (/3 sin y-OJc~a) (2Ia)

2wlb == 2w(f.d,(1l+r.~d~(1l+···) = 3r.xIJ'lll~/4+e~{[3xfJ,/(8w)r1l5

-(xl(l)~/2-3x~/4)al-/J cos ,'}/a. (2Ib)

Equations (21 a) and (21 b) arc non-autonomous in the variables (a. (Il) but autonomous
in the variables (a. y) since (b = (l1I:~rT~-';' An equilibrium solution (a = constant = (Ie.

" = constant = Yo) to these equations correspond to an 0(1:) approximate solution to eqn
(10). The amplitude -frequency relationship corresponding to this periodic solution is readily
obtained from eqns (2Ia) and (2Ib) as

{2w ~ I:~ rT ~ + [x I (I)~ /2 - 3(x ~ + iX/l~/I:)!4)(w) ~ - [h(fI,';I:)/ (Xw>r (w) ~ } ~

+ «(tJI:!c~) ~ = [t'/I!(I:lIW. (22)

The maximum amplitude. Will••• of the response described by eqn (22) is then

(23a)

and it occurs when the detuning 1:~(1! = n/w - I is equal to

An upper bound for the maximum amplitude of the motion can be readily obtained
from eqn (23b). By imposing the condition r.~rT~ « I, eqn (23b) yields as IJ.~/t == EAL ~/

(2D~) ..... 'X)

[ /" JI!"- ,Will•• «4(1) 3x D~/(EAL-) (24)

Since D~/(EA L~) == I~/(A L ~). where I~ is the principal area moment of inertia of the
cross section about the ,,-axis. is a very small quantity. the upper bound for the maximum
detlection for an extensional beam is of the order of the radius of gyration (normalized by
L) of the beam's cross section. As a consequence of W m;,. being a very small quantity. and
XfJA/r. being very large. the Xl. iX~ and (r.a)~ terms in eqn (22) are negligible compared to the
other terms in that equation. Thus. the nonlinearity due to midplane stretching is the
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Fig. I. Typical one-mode response of a hcam with Iixed ends (F-'f, = 0.0002, C = 0.002. It} = 22.37,
:I = 151.:1, = 0.7117, al: = -4(5): --. slable;·········, unstable.

dominant nonlinearity for extensional beams. Figure I shows the inlluence of EA L~/D~ in a
typical amplitude-frequency response for the three types of boundary conditions considered
here. The valucs of w, !l:. !l: I .tnd !l:~ for the first thrce modes are given in Table I.

NUMERICAL INTEGRATION or TilE DIFFERENTIAL EQUATION OF MOTION

The analytic.tl rcsults obtained in the prcvious session can be vcrified by comparing
thcm to an approximatc numerical solution to eqn (10). For this, w(x. t) is approximated
as w(x, t) = F(X)II·,(t). By applying Galerkin's procedure to eqn (10), the following ordinary
ditfcrential elJuation is thcn obtained for 1I',(t), with Ku = 00 :

ElJuation (25) immediately discloses that. in the limit as EA L 2/D~ ~X>, the coellicient
of the II} nonlinearity becomes Cl.EAL2/(2D~). Since. as indicated by eqn (15b), 0( is not
negative. this nonlinearity is always hardening for an extensional beam. Also. since the
maximum value of 11', is much smaller than J (D~/(EA L ~». as disclosed by eqn (24) and by
the values oflJJ and CI. shown in Table I, the terms 71W,2 and CI.,[dll',jd(lJJtWare negligible
compared to unity. Therefore. for an extensional beam, eqn (25) is essentially a damped
Dulling's equation with a hardening nonlinearity.

Equation (25) was integrated numerically from t = 0 to T. where T was chosen to be
large enough for the motion to reach a steady state. The numerical results are essentially
indistinguishable from those obtained by the perturbation analysis of the previous section

Tahle I. Natural frequencies and the Galerkin coefficients:l, all and:l: for it uniform hcitm (lirstthree modes)

ClamIX'd-clampcd hcam ClamIX'd-pinned beam Pinned pinned beam

It} 22.37 61.67 120.90 15.42 49.96 104.24 It: (21t): (31t):
:I 151 2121 9782 132 1840 8843 It· (21t)· (31t)·
:I, 0.789 3R.2 140 7.32 45.5 146 0 0 0
:I: -465 -5978 -32.140 -94 -1763 -11.000 0 0 0
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and shown in Fig. I. In the frequency range where the response is multivalued, the steady­
state response exhibited by the beam depends on the initial conditions of the motion.

SUMMARY AND CONCLUSIONS

As shown previously (Crespo da Silva and Glynn, 1978), the dynamic response of
inextensional beams can be significantly affected by non-linear inertia terms and by the
non-linear contribution to the bending curvature in the differential equations of motion.
These two effects can either reinforce or attenuate each other. Therefore, the question that
naturally arises is what role these nonlinearities play in the motion of extension beams. To
this author's knowledge. this question has been left unanswered in the literature to date.
To address such a question, the non-linear response of an extensional beam subjected to a
periodic excitation has been considered by taking into consideration the presence of these
non-linear terms, and the nonlinearity due to midplane stretching. It has been shown that
the effect of the latter nonlinearity is dominant and that neglecting the other non-linear
terms in the differential equations ofmotion for an extensional beam introduce no significant
error in the results of the analysis presented here. Also, it has been shown that, unlike the
response of an inextensional beam, the single mode response of an extensional beam is
always hardening.
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