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Abstract—The importance of including the effects of non-linear inertia and curvature in the analysis
of the motion of a beam with a constant distance between supports is assessed. For this. the non-
linear response of clamped-clamped and clamped-pinned beams to a harmonic load of frequency
near the undamped natural frequency of the beam is investigated by a perturbation method.

INTRODUCTION

The differential equations with cubic nonlinearities, developed in Part 1 of this work (Crespo
da Silva, 1988) for an extensional beam with arbitrary boundary conditions, are specialized
for a beam fixed (i.e. clamped or pinned) at one end and cither fixed or arbitrarily supported
at the other end. Here, for simplicity and for comparing results with other work presented
in the literature, the material propertics are taken to be constant along the beam. Also, the
effects of the distributed mass moments of inertia are neglected. This implies that the
torsional frequencies of the beam are much higher than its bending frequencics. The analysis
presented here discloses the influence of higher order terms in the non-lincar response of
extensional beams. As in example, the planar response of an extensional beam to a periodic
excitation, including the effect of all the cubic geometric nonlincarities, is analyzed in detail.
The excitation can be either distributed along the beam, concentrated at several points
along the span, or applicd at its base (in which case, the base would also be moving).

SIMPLIFIED EQUATIONS OF MOTION FOR HIGH TORSIONAL FREQUENCIES

Consider a beam fixed at x =0, i.e. u(x =0, t = t) = 0, and either free or supported
at x = L. The notation used here is the same as that in Part I (Crespo da Silva, 1988). Let
the beam be subjected to a distributed force with components Q,(x, 1) and @.(x, 1), along
its two principal bending directions, and let damping in the system be viscous with virtual
work given as —c(¢ dv+w dw). For simplicity, the effect of the distributed mass moments
of inertia are neglected. This implies that the beam’s torsional natural frequencics are much
higher than its bending natural frequencies. It is also assumed that the material properties
of the beam are constant.

Let the "« boundary condition™ at x = L be expressed in the general form

Kau(L,.)+LG(L.0)JEA =0 €
where K, = oo if u(L, 1) = 0 (i.e. if theend at x = L is fixed) and K, =0 il u(L,1) # 0 (i.e.

if the end at x = L is frce to move with a non-zero u-displacement component).
With Q,(x, 1) = 0, the displacement u(x, 1) is given as

u(x,t) = xG,(L.t)/EA - ;J.‘ W+ w?) dy+0("). (2)

This is obtained by integrating eqn (21) in Part [ (Crespo da Silva, [988), from x = 0 to x.
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Evaluating eqn (2) at x = L and combining the result with eqn (1), the following expres-
sion is obtained for G, (L.1):

K L
LG (L, = I w'?) dx.
(L.0)/EA 2(1+K,,)L (¢ +n"") dx 3)
By defining an angle of twist y(x. 1) as
yx.) =0 (x. )+ f o dy )
[

and by considering the beam’s end at x = 0 to be restrained against rotation, it follows
that 7(0.1) = 0. To O(¢?). and with @, = 0. the following relationship is readily obtained
for y(x.t) from eqn (18d) in Part I (Crespo da Silva, 1988). In eqn (5), H,(x,?)
= D.y(x. 00+ 0(c%)

D.y(x.ty = xH(L.)+(D.-D )J f v'w” dz dy. (5)

To obtain a general expression for H.(L, 6) let the 68, boundary condition™ at x = L be
expressed as

Ky(L.)+LH,(L,0)/D, =0 (6)

where K, = o if the end at x = L is restrained against rotation, and K, = 0 if it is {rec to
rotate. Evaluating eqn (5) at x = L and combining the result with egn (6), the following
expression for H,(L, 1) is obtained :

LHAL,t) = (vH-K (D, - D, )J- f v"w” dz dx. N

By making use of eqns (2)~(5), and (7)., the differential equations of motion, eqns (18b)
and (18c¢) in Part [ (Crespo da Silva, 1988) can be written as two integro-partial differential
equations in the bending deflections o{x, 1) and w(x, ). This was done analytically, by
computer, with the aid of MACSYMA (Rand, 1984). To analyze the motion described by
such equations, it is convenient to nondimensionalize the variables involved. With ( )*
denoting the non-dimensional form of ( ), one lets

v* =x/L, 1* =D, /(mL* ), c*=cL}mD,)"?
a*=a/L, QF=Q,L'/D, (x=0o,w). t:3)
With primes and dots denoting, from now on, partial differentiation with respect to x
and ¢, respectively, and dropping the superscript * for convenience in notation, the nor-
malized differential equations describing the flexural-flexural motion of an extensional
beam with nonlinearities up to O(s%) are then

KM "

21+ K,

+ ‘_ s o V' '”d"“‘ K 4’:» "d" ’J.J‘ X "d’d\“}
{( ﬂ»)[:u‘[tu y - J;tn y — I-H&;; y

F+ct+B0" = Qu.x.0)+(EAL?ID,)

f(v +w'?) dx
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(l—ﬂ) l: j j Uw” do dy— (tu")f J‘ v"w” dy dr]

B (v +ww") +8 K 'r( Cewt) dt-&-‘t’f[ ¥k, J.‘ @ +w?) dx
=Bt +w'w  —— v+ n') dxe+ e — =4 w7} do
) ‘+1\u [ 1 |+’\u 0

_L (" +w?) d:]. ' d_v}‘ (9a)

" Ku " ! - 5
WwHow+w” = Q. (. 1)+ (EAL®/D,) ;(l—:—k—ij (0" 4+w") dx
- u (1)

— l — ! ‘" ’ .IP 'lt d . ‘"' ." .t d [ ’Iﬂ' ‘t — "‘ ” d d
{( [f,)[z J: r'w” dy 4 J; r'w dy—-e"r'w’ iT—KJ; j. t v r]
—_ [ j J “w” dz dy— [f_(:;;)f J~ v"w” dy dv] + 0 (0" + ww)

{ x .
;::;“ X @ +w?) d\-—-,wf [‘:AK" A 0 +w )dt—.‘{\ (4w )d] d;}

(9b)

where i, = D./D,and . = D./D,.

To O(%), eqns (9a) and (9b) reduce, for K, = oo, to eqns (5) and (6) in Ho, Scott and
Eisley (1975) and to eqns (1) and (2) in Ho, Scott and Eisley (1976), where the forced and
free non-lincar non-planar motions of a pinned -pinned beam were investigated. For planar
motion (i.c. ¢cither o(x, £) = 0 or w(x, 1) = 0) these equations also reduce to egns (20) in
Nayfceh, Mook and Sridhar (1974) and to similar equations used by a4 number of investi-
gators with K, = oo, to analyzce the response of beams with a fixed distance between supports
(Burgreen, 1951 ; Countryman and Kannan, 1985 ; Eisley, 1964 ; Eisley and Bennett, 1970,
Ray and Bert, 1969 ; Srinivasan, 1966; Tseng and Dugundji, 1970 Woinovsky-Krieger,
1950).

The quantity D,/(EAL?) that appears in the first bracketed term £ }in eqns (9a) and
(9b) is very small. [t is the square of the radius of gyration (normalized by the length L of
the undeformed beam) of the beam’s cross section. For extensional beams, where K, # 0,
those terms are the dominant nonlinearities in the equations of motion. With D, /[(EAL?) =
O(g), they are O(e*) while the remaining non-linear terms in the equations are O(¢*). These
dominant nonlincarities, which are equal to Aa” = «’G,(1, 1) (x = v, w), are due to midplane
stretching of the beam. As indicated above, they are the same terms obtained by a number
of other authors. For extensional beams, if one chooses £ = D, /(EAL?) as in Nayfeh, Mook
and Sridhar (1974), it is seen that the bending deflections are O(e) and, thus, very small. In
the next scction, the quantitative effect of both the O(e?) and O(£®) non-lincar terms in the
motion of an extensional beam is investigated in detail.

When K, = 0 the beam behaves as inextensional to O(¢*). In this casc, all nonlincarities
for an initially straight beam are cubic. For K, = 0 and K, = 0, eqns (9a) and (9b) reduce
to eqns (5a) and (5b) in Crespo da Silva and Glynn (1978) for clamped -free beams.

RESPONSE CHARACTERISTICS OF A RESONANT MOTION

To assess the influence of the O(&*) non-lincar terms in the response of an extensional
beam, consider the planar motion of pinned-pinned, pinned-clamped or clamped-clamped
beams subjected to a distributed periodic excitation Q. (x, 1) = Q(x) cos ({1+1). For
r{x, 1) = 0, eqn (9b) reduces to
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1
W+ w™ = Q(x) cos (Q+1) + ilf_—"K——)(EALz/D,,)w” '[ w2 dx— [(w (ww")]’
- u 0

K 1 t VK 1 v .. ‘.
u o 2 1o, YRy ’2 _ 2 9.
+{I+K,“ J; n d.'H-sz‘l [-—1+K,,J; w* dx J; w d.:' dy}. (10)

To determine the steady-state response of the beam. and the character of the perturbed
response about its steady state. use will be made of the perturbation method of multiple
time scales (Nayfeh, 1981; Nayfeh and Mook, 1979). For this. three time scales ¢, = ¢,
t, = &t and t, = ¢°¢ are introduced. where ¢ is a small arbitrary parameter used only for
“bookkeeping purposes”. With K, = o0, we let

EAL®/(2D,) & B,/¢ (11a)
and expand the displacement w(x, f) as
WX Loty tai8) = Ew (X, Loty ) F 6w (X tg 81 ) +E3 WS (X, tou ty o ta) + <o (11b)

To address the harmonic response of the beam including all the nonlinearities present in
the differential equation, eqn (10), the damping cocfficient and the excitation are expressed
as

c=e%c, Qx) = £'Q(x). (1l¢)

With d( )/dt = (dy+ed, +&>dy+ -++) (), where d,( ) = d( )/dt, (n=0,1,2,...). egn
(10) then yields the following perturbation equations for w, (¢, 1, ,).

O@): diw,+w) = (12a)

0(62) . (lﬁll’z + H'lz’" = -Ztlod, W, +[‘AW'; J ”'Ilz dx (le)

0

O@’): diws+wy = Q3(x) cos (Qy+1) —2dod Wy — (d? + 2dydy)w, — cdow,

| x [} ¥ ,
— W e )]+ {w’,"f w de+ §tt",¢15j [tJ w2 d.\‘—j wh? d::| dy} . (12¢)
[} ! 1] [}]

Considering a one mode response, the solution to eqn (12a) is
Wi (X, Lo, £y ta) = F(x)a(ty, t2) cos [wiy+®(t4, t5)] & F(x)a cos VY (13a)

where F(x) satisfics the differential equation F™ —w?*F = 0. With
i
f Filx)dx =1
[}]

for later convenience, F(x) is given as:

pinned-pinned beam
F(x) = /2sin (nax); n=1,2,...; (13b)

pinned—clamped or clamped—<clamped beam
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F(x) = cosh (rx) —cos (rx) — K[sinh (rx) —sin (rx)]

K = [cosh (r) —cos (r)]/[sinh (r) —sin (r)]. (13¢)
The frequency w = r’ of the linearized oscillation satisfies the following relations :

14 (cosh r) cos r =0 for the clamped-clamped beam

tan r = tanh r for the clamped-pinned beam.

To obtain an approximate solution for the non-linear response, it is convenient to introduce
the quantities

wi(to. 1. t2) = j‘ Flw (x. tg. 1. t:) dx (i=2.3) (14)
0

and then transform eqns (12b) and (12c) to ordinary differential equations by multiplying
them by F(x) and then integrating the result over the domain of x. With this procedure,
eqn (12b) yields

diwys +w’wyy = 2w(d,a) sin ¥ +aRwd, ® - 3xf ,a°/4) cos ¥ — (aff,a’/4) cos (3¥)

(15a)
where
1 { | M
o = -—J- FF” dxf F? dx=|:J‘ F? dx]. (15b)
0 I} 0
The solvability conditions for eqn (15a), i.e. the necessary conditions for the solution
to be periodic, are scen to be :
dia=0 (16a)
2wd,® = 3aff ,a*/4. (16b)

To address the resonant case where Q is near w in eqn (12¢), a detuning £%6, « | is
introduced as

Q = w(l +&%0,). (17

With the transformation given by eqn (14), the O(*) eqn (12¢) yields the following
differential equation for wy;;

diwyy+wwyy = f3 cos (W +7) =2dyd \wys = (di +2dod )Wy — Cadyw

—aawi = wy [wdiwy + (dywy )] (18)

where w,, = a(t;) cos ¥ and
v=woy;—P+1 (19a)
|
fi= J‘ F(x)Q;(x) dx (19b)
0

X

t 4 1 v ’
-—J- F{F'J- [yf F? d.\'—J~ F’zdx] d_v} dx (19¢)
0 1 0 0
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| 1 .
% = — f F[F J F? dx—F’(F’F")’] dx. (19d)
0 0

By making use of eqns (16a) and (16b) and of the particular solution to eqn (15a) for
w».. the solvability conditions for eqn (18) are obtained as follows :

2oda+wc.a = fysin y (20a)

2wad,® —[3x8,/(8w)]*a® + (x,w*/2 - 3x./4)a* = —f; cos 7. (20b)

In terms of the original time ¢. the solvability conditions for eqn (10) are obtained by
combining eqns (16a). (16b). (20a) and (20b). This yields the following differential equations
for the amplitude and **phase™ of the response:

2wa = 2u(eda+e*da+ ) = £° (f; sin y—wc,a) (2la)
20b = 2w(ed D +ed .+ ) = 3exf @t /467 {32,/ (Bw)]*d’

— (2, w*2=3x,/4)a’ —f; cos 7} /a. (21b)

Equations (21a) and (21b) are non-autonomous in the variables («, ®) but autonomous
in the variables (a.y) since & = we’e,—5. An cquilibrium solution (¢ = constant = a,,
3 = constant = y,) to these equations correspond to an O(r) approximate solution to eqn
(10). The amplitude -frequency relationship corresponding to this periodic solution is readily
obtained from eqns (21a) and (21b) as

Dot + 0?2 =3, +af /o) /3 (a) = [Ba(fJe)/(Bew)) ()
+(weley)? = [ fifea))’.  (22)

The maximum amplitude, e, of the response described by eqn (22) is then
€l = & 1] (wE¢S) (23a)
and it occurs when the detuning &°a, = Q/w — | is equal to
e'ay = {[3a(B./6)/(Bw)] (edmye) — (21032 = 3(x1 + 2B,/€)/8]} (nay )}/ (20%). (23b)
An upper bound for the maximum amplitude of the motion can be readily obtained

from eqn (23b). By imposing the condition £’y « 1, eqn (23b) yields as f,/e = EAL?/
(2D,) = w

/2 s 2
Ellpay << 441;[‘” D,,/(EAL’)] . (24)

Since D,/(EAL®) = I,/(AL"). where [, is the principal arca moment of inertia of the
cross scction about the y-axis, is a very small quantity, the upper bound for the maximum
deflection for an extensional beam is of the order of the radius of gyration (normalized by
L) of the beam’s cross section. As a consequence of &ay,,, being a very small quantity, and
2f8 /e being very large. the x,, a; and (ea)* terms in eqn (22) are negligible compared to the
other terms in that equation. Thus, the nonlincarity due to midplane stretching is the
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Fig. [. Typical one-mode response of a beam with fixed ends (='f, = 0.0002, ¢ = 0.002, v = 22.37,
x =151, 2, =0.787, a, = —465): Jstabley oo . unstable.

dominant nonlincarity for extensional beams. Figure | shows the influence of EAL?/D, ina
typical amplitude -frequency response for the three types of boundary conditions considered
here. The vilues of w, a, «, and a, for the first three modes are given in Table 1.

NUMERICAL INTEGRATION OF THE DIFFERENTIAL EQUATION OF MOTION

The analytical results obtained in the previous session can be verified by comparing
them to an approximate numerical solution to ¢qn (10). For this, w(x, 1) is approximated
as w(x, 1) = F(x)w,(r). By applying Galerkin's procedure to eqn (10), the following ordinary
diferential equation is then obtained for w(f), with K, = oo :

Wl +awl)+ o, + (@ + 2 w)w, + [2, +aEAL*((2D,)]w} = (£ f,) cos (Qr+1).  (25)

Equation (25) immediately discloses that, in the limit as EAL?/D, — 0, the coeflicient
of the w} nonlincarity becomes aEALz/(2D,,). Since, as indicated by egqn (15b), a is not
negative, this nonlinearity is always hardening for an extensional beam. Also, since the
miximum value of w, is much smaller than \/(D,,/(EALZ)), as disclosed by eqn (24) and by
the values of o and « shown in Table 1, the terms x,w and a,[dw,/d(w?)]* are negligible
compared to unity. Therefore, for an extensional beam, eqn (25) is essentially a damped
Dufling’s equation with a hardening nonlincarity.

Equation (25) was integrated numerically from ¢ = 0 to 7, where T was chosen to be
large enough for the motion to reach a steady state. The numerical results are essentially
indistinguishable from those obtained by the perturbation analysis of the previous scction

Tabic 1. Natural frequencies and the Galerkin cocfficients 2, @, and z, for a uniform beam (lirst three modes)

Clamped clamped beam Clamped -pinned beam Pinned-pinned beam
w 2237 61.67 120.90 15.42 49.96  104.24 n? (2n)? (3n)*
2 151 2121 9782 132 1840 8843 n' (2n)* (3m)*

x, 0.789 382 140 7.32 45.5 146 0 0 0
2, —465 -5978 32140 -94 -1763  —11.000 0 0 0
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and shown in Fig. 1. In the frequency range where the response is multivalued, the steady-
state response exhibited by the beam depends on the initial conditions of the motion.

SUMMARY AND CONCLUSIONS

As shown previously (Crespo da Silva and Glynn, 1978). the dynamic response of
inextensional beams can be significantly affected by non-linear inertia terms and by the
non-linear contribution to the bending curvature in the differential equations of motion.
These two effects can either reinforce or attenuate each other. Therefore, the question that
naturally arises is what role these nonlinearities play in the motion of extension beams. To
this author’s knowledge. this question has been left unanswered in the literature to date.
To address such a question, the non-linear response of an extensional beam subjected to a
periodic excitation has been considered by taking into consideration the presence of these
non-linear terms, and the nonlinearity due to midplane stretching. It has been shown that
the effect of the latter nonlinearity is dominant and that neglecting the other non-linear
terms in the differential equations of motion for an extensional beam introduce no significant
error in the results of the analysis presented here. Also, it has been shown that. unlike the
response of an inextensional beam, the single mode response of an extensional beam is
always hardening.
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